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ABSTRACT 

A ring A is left co-Noetherian if the injective hull of each simple left A-module 
is Artinian. Such rings have been studied by V~mos and Jans. Dually, call .4 
left co-Artinian if the injective hull of each simple left A-module is Noetherian. 
Left co-Artinian rings having only finitely many nonisomorphic simple left mo- 
dules are studied, and such rings are shown to have nilpotent radical. Moreover, 
it is shown that left co-Artinian implies left co-Noetherian if A/J is Artinian. 
For an injective left A -module aQ with B = End (.4Q), and C = End (QB), 
conditions yielding a Morita duality between ~lJ~ B and c ~  are obtained. In spe- 
cial cases, e.g. aQ a self-cogenerator, this Morita duality yields chain conditions 
on aQ. Specialized to commutative rings, these results give the known fact that 
every commutative co-Artinian ring is co-Noetherian. Finally in the case that 
the injective hull .4E = E (aS) of a simple left A-module aS is a self-cogenerator, 
chain conditions on .4E are related to chain conditions on B B = End (.,rE). The 
results obtained are analogous to results for commutative rings of V~imos, 
Rosenberg and Zelinsky. It is shown that if A is a left co-Artinian, ring 

E( aS) a AS ,  N, oo with self-cogenerator for each simple then J is nil and = 1J' = O. 

A ring A is said to be left co-Noether ian  if the injective hull o f  each simple left 

A-module is Artinian. Such rings have been studied by Wtmos [16] and Jans [5].  

Dually, A is said to be left co-Artinian if the injective hull o f  each simple left 

A-module  is Noetherian.  Every commutat ive  co-Artinian ring is co-Noetherian.  

In w we investigate noncommuta t ive  left co-Artinian rings having only finitely 

many  nonisomorphic  simple left modules and show that such rings have nilpotent 

radical. Moreover ,  if  A / J  is Artinian,  we show that  left co-Artinian implies left 

co-Noetherian.  

In  w for an injective left A-module  AQ with B = End(aQ) ,  we investigate 

condit ions yielding a Mori ta  duality between ~l~n and c~92, where C = End(Qn). 

In  special cases, e.g. aQ a self-cogenerator, this Mori ta  duality yields chain 
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conditions on AQ. Specialized to commutative rings, our results give the above 

mentioned fact that every commutative co-Artinian ring is co-Noetherian. 

In w assuming that the injective hull AE of a simple left A-module aS is a 

self-cogenerator, we relate chain conditions on aE to chain conditions on B B 

= End(aE). The results obtained are analogous to results for commutative rings 

of V~imos, Rosenberg, and Zelinsky. It is shown that if A is a left co-Artinian ring 

~o J ' = 0 .  with E(.4S) a self-cogenerator for each simple aS, then J is nil and f")i= 1 

1. Preliminaries 

Throughout this paper, A willdenote an associative ring with unit and all modules 

will be unitary. All maps will be written on the side opposite the scalars. For an 

A-module X, E(X) will denote the injective hull of X. 

For a left A-module aQ, Morita [9] has defined a left A-module AY to be of 

AQ-dominant dimension >___ 1 if aY is embeddable in a direct product of copies 

of aQ. We let ~I(AQ) denote the full subcategory of a932 consisting of all left 

A-modules of aQ-dominant dimension > 1. It is easily seen that Y~I( .4Q) if 

and only if the natural map Y ~  Y** = HomA(HomB(Y, Q),Q) is a monomor- 

phism where B = End(aQ) (see for example [-14]). If ~31(aQ ) = AgJt, then aQ is 

said to be a cogenerator for agJ~. 

The following notation is due to Sandomierski [14]. For a left A-module X, 

let xgJ~' denote the full subcategory of agJ~ consisting of all left A-modules iso- 

morphic to submodules of factor modules of X n, n = 1,2,. . . ,  where X n is a direct 

sum of n copies of X. A left A-module AQ is said to be a self-cogenerator if QgJ~' 

~- ~(AQ). 
A left A-module AQ is said to be a AY-injective if every A-homomorphism 

from a submodule AX c_ Ay into AQ extends to an A-homomorphism from ~tY 

into AQ. If .4Q is AQ-injective, we say AQ is quasi-injective. A zumaya [1] has 

shown that if AQ is quasi-injective, then AQ is AY-injective for all Y ~ Qg~'. 

LEMMA 1.1. If AQ is quasi-injective, the following statements are equivalent. 

a) AX ~- aQ implies Q/X ~I(AQ). 

b) AQ is a self-cogenerator. 

PROOF. 

(a) =~ (b). It is sufficient to show that AX ~-AQ ~ implies Q"/xe791(AQ). The 

proof is by induction on n. If  n = 1, then X ___ Q and Q/X ~ ~I(AQ) by assumption. 
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Let n > 1 and a X ~  aQ". Let Pi: Q-~ Q" be the i'th injection map and let 

rl: Q" ~ Q" ]x  be the natural map. Since Q"/X ~ O, there exists an index i such 

that r =Pirlr Then L = i m r  ~ Q/ker r ~ ~)1 (aQ). Furthermore, M 

= (Q"/X)/L can be identified as a factor of n - 1 copies ofaQ. Hence M ~ ~31(aQ) 

by the induction hypothesis. Since aQ is quasi-injective, we have in Fig. 1 a com- 

mutative diagram with exact rows. Since L and M are in ~)l(aQ), both 0~ and 7 

are monomorphisms. A simple diagram chase shows that fl is a monomorphism. 

Therefore, Q"/X e ~I(AQ). 

0 ~ L ~ Q n / x  ~- M l, 0 

L-x~ -X-x- -x*  
0 ~, ~" ( Q n / x )  ~ M 

Fig. 1 

(b) ~ (a). Trivial. 

Let aQ be a left A-module with B = End(aQ). For aX a submodule of aY 

and LR a submodule of Y* = Homa(Y, Q), let Annr,(X ) = {re  r * l x f  = 0} and 

Annr(L) = {Y ~ YI yL = 0}. The following lemma is left to the reader. 

LEMMA 1.2. For aX ~_ a Y, Annr,(X)B ~ Homa( Y /X , Q)B. 

Let A be a ring with Jacobson radical J (see [6]). If given any sequence {xi},~= 1 

_~ J there is a finite index n such that xl x2 ... x, = 0, then J is said to be left 

T-nilpotent. Bass [2] has defined a ring A to be left (right) perfect if A / J  is 

Artinian and J is left (right) T-nilpotent. If A / J  is Artinian and J is nilpotent, 

then A is said to be semiprimary. 

Given a left A-module X, the socle of ,iX, denoted So (aX), is defined to be 

the sum of all of the simple submodules of aX. If aX has no simple submodules, 

So (aX) = 0. Bass [2] has shown that a ring A is left perfect if and only if A / J  

is Artinian and So (Ma) is an essential submodule of Ma for all M ~ ~9/a. 

A left A-module aX is said to be cofinitely generated i faX has finitely generated 

essential socle (see [5] and ]-16]). Morita [9] has called aX finitely cogenerating 

if A/Ann a(X) can be embedded as a left A-module in a finite direct sum of copies 

of aX. 

Let AQ be an injective left A-module. Then ~ l ~ Q )  is closed under submodules, 

extensions, arbitrary direct products, and injective hulls. Thus ~)I(AQ) is a torsion- 

free class as defined by Dickson [4] with 
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~(aQ) = {X e a9321 Homa(X, Q) = 0} 

as its associated hereditary torsion class. We let As denote the ring of left quotients 

of A with respect to the hereditary torsion class ~(AQ). By [9, Th. 5.6], if aQ is 

finitely cogenerating, then As coincides with C = End (QB) where B = End (aQ). 

The reader is referred to [7] and [15] for further information on torsion theories 

and rings of quotients. 

Let aQ be an injective cogenerator for Ag~ with B = End (AQ). The bimodule 

aQB is said to afford a Morita duality between a992 and 9~B if the natural maps 

aX ~ AX** = HOmB(HOma(X, Q), Q) 

Ln ~ LB** = H o m  a (HOmB (L, Q), Q) 

are isomorphisms for all X ~ ag~' and all L s 9J~. It is well known that an injec- 

tive cogenerator aQ yields such a Morita duality if and only if QB is an injective 

cogenerator and A ~ End(QB). The reader is referred to [10], [11], and [12]. 

2. Closed sub:nodules 

Throughout this section AQ will denote a quasi-injective left A-module with 

A-endomorphism ring B. For AY, we examine an order reversing correspondence 

between A-submodules of Y and B-submodules of its Q-dual Y* = HomA(Y, Q). 

If Y = Q, this correspondence relates finiteness conditions on the ring B to 

certain chain conditions on AQ. 
Let aX be a submodule ofaY. We call X a closed submodule of Y with respect 

to AQ if Y/X can be embedded in a direct product of copies of AQ, i.e. 

Y / X ~ I ( a Q ) .  If Y/X can be embedded in a finite direct sum of copies of aQ, 

we call X a finitely closed submodule of Y with respect to AQ. In the case that aQ 

is injective, ~31(aQ) is a torsion-free class, and X is a closed submodule of Y with 

respect to aQ if and only if Y/X is torsion free [7, p. 3]. When there is no possi- 

bility of confusion, we will simply call AX a (finitely) closed submodule of aY. 

The following theorem is essentially in 1-14]. We include the proof for 

completeness. 

THEOREM 2.1. Let aQ be quasi-injective with B = End(AQ). 

a) If  aX is a closed submodule of aY , then AnnrAnnr.(X ) = X. 

b) There is a one-to-one order reversin9 correspondence between the finitely 
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closed submodules of AY and the finitely generated submodules of Y* given by 

,~X-, Annr,(X ). The inverse correspondence is given by L B ~ Annr(L ). 

PROOF. 

a) Let X be a closed submodule of Y. Since Y/XE~I(~Q) ,  there exists 

{fi ]fi ~ Y*}i~t such that t3 i~z Kerfi  = X. Clearly X _~ AnnrAnnr,(X ) 

= t3 { K e r f J f ~ Y * , X  ~ Kerf}_~ r  

b) Let AX be a finitely closed submodule of Y. Thus there exists an exact 

sequence 

0 ~ Y / X  "* AQ". 

Since ,iQ is quasi-injective, 

Hom,4(Q", Q)B --' Hom A(Y /X, Q)B - '  0 

is exact. Thus Ann r,(X) ~ Hom,4(Y IX, Q) is finitely generated since HomA(Q" , Q) 

B~. That X = AnnrAnnr , (X ) follows by (a). 

Let La = f i b  + ... + f ,B be a finitely generated submodule of Y*. Since 

r ~ l K e r f i =  n f ~ L K e r f = A n n r ( L )  c_Kerf~, each fi induces a map 

f~: Y/Annr(L ) - ,  Q. Thus we have the exact sequence 

0 ~ Y/Annr(L ) #-, Q" 

where ~b = ( f l  .... , f , ) .  Thus Ann r(L ) is a finitely closed submodule of A Y. 

Clearly L a _~ Annr ,Annr(L ). Let g ~ Ann r,  Ann r(L ). Then g induces a map 

~: Y /Annr (L ) - ,  Q. We have in Fig. 2 a commutative diagram where 

2eHomA(Q", Q)~-B  n follows by the quasi-injectivity of AQ. Thus g = ~b2 
n -b = ~ i = l f /  i, a n d s o g =  E~=lfibi~LB. 

0 Y/Army(L) ~ ~ Qn (exact) 

Q X=(bt,...,b n) 
Fig. 2 

If  AY = AQ, we have the following corollary. 

COROLLARY 2.2. Let AQ be quasi-injective with B = End(AQ). Then 
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a) B is right Noetherian if and only if AQ has DCC on finitely closed sub- 

modules. 

b) B is left perfect if and only if AQ has ACC on finitely closed submodules. 

c) B is semiprimary if A Q has ACC on closed submodules. 

PROOF. 

a) Trivial. 

b) This follows from the fact that a ring is left perfect if and only if it has DCC 

on finitely generated right ideals [3, Th. 2]. 

c) By (b), it is sufficient to show that the radical N of B is nilpotent. Since 

B/N is semisimple, So(WB) -- Annw(N) for all We 9J~B. Let Sol(QB) = So(QB) 

and for i >  1, inductively define So~(Q~) to be the inverse image in QB of 

So(Q/So/-1 (Q)). It is easy to see that Soi(QB) = Anne(N/), hence Soi(QB) is an 

A-submodule of Q. Also So/(QB) is a closed A-submodule of Q since there is a 

natural A-embedding of Q/Ann e (N/) into a direct product of copies of AQ. Since 

B is left perfect, Soi-I(QB)~ Soi(Qa) unless Soi-I(QB)= Q. By hypothesis, 

Anne(N/) = SoI(QB) -- Q for some integer i. Thus Ni= 0 since Q~ is faithful. 

3. Co-Artinian rings 

Jans [5] has called a ring A left co-Noetherian if factors of cofinitely generated 

left A-modules are co finitely generated. Using V~imos' results, Jans shows that A is 

left co-Noetherian if and only if the injective hull of each simple left A-module 

is Artinian. This is equivalent to property (P) of V~imos [16] that every cofinitely 

generated left A-module is Artinian. 

Dually, we call a ring A left co-Artinian if the injective hull of each simple left 

A-module is Noetherian. It is easily seen that this definition is equivalent to 

property (Q) of V~imos which requires that every cofinitely generated left A-module 

be finitely generated. Compare this with Vhmos' result [16, Proposition 5] that A 

is left Artinian if and only if every finitely generated left A-module is cofinitely 

generated. One easily sees that a ring A having only a finite number of non- 

isomorphic simple left A-modules is left co-Noetherian (co-Artinian) if and only 

if the minimal injective cogenerator for Ag)l is Artinian (Noetherian). 

In this section, we relate the co-Artinian and co-Noetherian properties for rings 

A with A/J  Artinian, and extend a result of Rosenberg and Zelinsky [-13, Th. 4] 

which shows that J is nilpotent if the minimal injective cogenerator for AgJI has 
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finite length. Our proofs rely heavily upon the techniques of Rosenberg and 

Zelinsky. 

LEMMA 3.1. Let AQ be the minimal injective cogenerator for agJ~. I f  AQ is 

Noetherian (Artinian) then A has DCC (ACC) on two-sided ideals. 

PROOF. We consider only the case when aQ is Noetherian as the Artinian case 

follows in a similar manner. 

Let A ~ L1 ~ L2 ~ ... be a descending chain of  two-sided ideals of A. Let 

Q~ = Anne(L/). Then we have 0 _ Q1 - Q2 ~ .. . .  Since AQ is Noetherian, there 

exists an integer k such that Qk = Qk+j for all j > 1. By [13, Lemma 1] 

HomA (Lk/Lk + j, Q) ~- Qk + j/Qk = 0 

for a l l j  > 1. Thus L k = Lk+ j for a l l j  > 1 since aQ is a cogenerator. 

THEOREM 3.2. I f  the minimal injective cogenerator,~Q for agJ[ is Noetherian, 

then J is nilpotent. 

PROOF. Consider the descending chain A D J __p_ j2 ~ ... of two-sided ideals. 

By Lemma 3.1, there exists an integer k such that jk = jk+ 1. Then jkQ = jk+ 1Q. 

Since jkQ is finitely generated, this forces jkQ = 0 by Nakayama's lemma. Thus 

jk = 0 since AQ is faithful (see [-13, Lemma 6-]). 

In view of the previously mentioned result of Rosenberg and Zelinsky, one 

might ask whether or not the minimal injective cogenerator for AgX has finite 

length whenever it is Noetherian. For commutative rings, this is the case since 

any commutative co-Artinian ring is co-Noetherian (see [-16, Prop. 4-] or our 

Corollary 4.7). The authors have been unable to answer this question in general 

but have obtained the following partial solution. 

PROPOSITION 3.3. Let A /J  be Artinian and let AQ be an injective cogenerator 

for A~I[R. The following statements are equivalent. 

a) aQ is Noetherian. 

b) aQ is Artinian and J is nilpotent. 

c) aQ is Artinian and J is left T-nilpotent. 

PROOF. If AQ is Noetherian, then J is nilpotent by Theorem 3.2. Thus given 

either (a) or (b) we have a descending chain 
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Q ~ j Q ~  j2Q~. . .  ~ jkQ = 0 

for some integer k. A similar chain follows by (c) since ji+IQ~ f Q  if jiQ 

by the left T-nilpotence of J. Now if AQ is Noetherian (Artinian), then each 

j iQ/f+lQ is semisimple Noetherian (Artinian) as an A-module. In any case, 

the above chain can be refined to a composition series. 

COROLLARY 3.4. For A /J Artinian, the followin# statements are equivalent. 

a) A is left co-Artinian. 

b) A is left co-Noetherian and semiprimary. 

c) A is left co-Noetherian and left perfect. 

REMARKS. 

1) The localization of the integers at a prime p yields an example of a com- 

mutative, local (hence semiperfect) co-Noetherian ring which is not co-Artinian. 

See 113, Lemma 7]. 

2) Corollary 3.4 raises the question of whether or not a left co-Noetherian 

right perfect ring is left co-Artinian. 

3) It is possible that any ring satisfying the equivalent conditions of Corollary 

3.4 is left Artinian. Mueller observes [10, p. 1344] that Osofsky's conjecture (P) 

[12, p. 385] implies that a semiperfect ring A has a left Morita duality whenever 

the minimal injective cogenerator AQ for Ag~ has finite length. In the setting of 

Corollary 3.4, AQ has finite length and A is semiprimary; thus conjecture (P) 

would imply that A is left Artinian [12, Th. 3-]. 

4. Duality 

V~.mos [16, Prop. 4-] has shown that every cofinitely generated Noetherian 

module over a commutative ring A is Artinian. Thus, as noted in w every com- 

mutative co-Artinian ring is co-Noetherian. V~imos' result is a consequence of a 

theorem of Matlis [8, Prop. 3-] that every cofinitely generated module over a com- 

mutative Noetherian ring is Artinian. The proof of Matlis' result essentially 

depends upon the fact that the localization AM of a commutative ring A with 

respect to a maximal ideal M has Morita duality if the injective hull E(A/M) is 

Noetherian. In the following we investigate an analogous situation in the non- 

commutative case. 

Let ~ be a hereditary torsion class for A9~12 and let Az be the ring of left quotients 
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of A with respect to 3.  Via the natural ring homomorphism A --, Az, each Az- 

module can be viewed as an A-module. We call ~ a perfect torsion class (compare 

[-15, exercise 1, p. 81]) if every left Az-module is torsion free viewed as an A- 

module. Any hereditary torsion class ~ is of the form ~ = ~(aE) = {X ~ agY~ ] 

H o m a ( X , E  ) = 0} for some finitely cogenerating injective left A-module aE. 

Moreover, Morita has shown [-9, Th. 5.6] that Az coincides with the double 

centralizer of any finitely cogenerating injective A-module A E which determines 

3.  Throughout the following, AE denotes an injective A-module with B = End(aE) 

and C = End (En). 

LEMMA 4.1. Let aE be a finitely cogeneratin# injective A-module. Then 

~(aE) is a perfect torsion class if and only if c E is an injective cogenerator for 

PROOF. Suppose that ~(aE) is perfect. By [9, Th. 2.3] cE is injective and 

c E ~ cHom a(aCc, aE). Thus for X ~ cgJ~ 

Homc(X, E) ~- Homc(X, Homa(C, E)) ~ Homa(aC | c X, E) ~- Homa(X , E). 

In particular, let X be a simple left C-module. Since ~(aE) is perfect, X ~ ~3x(aE) 

hence Homa(X, E) r 0. Thus Homc(X, E) ~ 0, and therefore, cE is an injective 

cogenerator. 

Conversely, let c E be an injective cogenerator and let X ~ cgJ/. Then X ~ ~3~(cE), 

hence as an A-module, X ~ ~)l(aE). That is, aX is torsion free. 

In the commutative case we obtain the following consequence of Lemma 4.1. 

COROLLARY 4.2. Let A be a commutative rin9 with maximal ideal M. I f  

aE = E(A/M) is finitely cogeneratin 9 (e.9. if aE is Noetherian), then ~(aE) is 

perfect and C coincides with the localization AM of A with respect to the maxi- 

mal ideal M. 

PROOF. Since aE is finitely cogenerating, C coincides with Az = A M. By [13 ~ 

Lemma 7], as an AM-module, E is an injective cogenerator. 

THEOREM 4.3. Let aE be injective with B = End(aE ) and C = End (EB). I f  EB 

is finitely cogeneratin9 (e.9. if AE is finitely 9enerated) and Noetherian and 

if ~(aE) is perfect, then 
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a) B B and c C are Artinian. 

b) E B and c E are injective cogenerators of finite length. 

Hence cEB yields a Morita duality between 9~a and c9~. 

PROOF. Since EB is finitely generated, aE is finitely cogenerating.Thus by Lemma 

4.1, c E is an injective cogenerator since ~(AE) is perfect. Now B = End(cE ) and 

E B ~- Hom c(cC,cE~) is the cE-dual of cC. Every submodule of c C is closed with 

respect to cE since cE is a cogenerator. Thus cC is Artinian by (a) of Theorem 

2.1 since EB is Noetherian. 

Since E B is finitely cogenerating and faithful, there exists an exact sequence 

0 -'~ B B ~ E~B. 

Applying the functor cHomB( , E~) yields the exact sequence 

cC" ~ c E ~ cW ~ 0 

where W = coker f. Since c E is injective, we have in Fig. 3 a commutative diagram 

with exact rows where the vertical maps are isomorphisms. Thus Hom c(W, E) = 0 

which implies that W = 0 since cE is a cogenerator. Therefore, c E is finitely 

generated. 

0 

n 
0 ~ B B ~ E B 

-~Hom c (W,E)-~----~Homc(E,E) .~ Horn (Cn, E) 

Fig. 3 

Since cC is Artinian, c E being finitely generated implies that c E has finite length. 

Thus EB is an injective cogenerator (see for example Lemmas 3.5 and 3.7 of [14]). 

Hence cEB yields a Morita duality between 9J~B and c92R. 

By (c) of Corollary 2.2, B is semiprimary, so by [-12, Th. 3] B~ is Artinian. 

Finally, EB is finitely generated and thus has finite length. 

REMARK. Suppose further in Theorem 4.3 that AE is cofinitely generated with 

So (aE) = S = G~. = 1 Si where each 4Si is simple. For each .IX _~ 4E, there are 
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natural left C-isomorphisms Lz(X) "~ C | AX ~- CX where Lz(X) denotes the 

localization of X with respect to ~ = ~3(AE). The first isomorphism follows since 

is perfect [15, Th. 13.1]. The second is verified by noting that the composition 

of the natural epimorphism C |  CX with the essential left A-monomor- 

phism X ~ Lz(X) ~- C | AX [-15, Propositions 6.4 and 8.1] is a monomorphism. 

In particular, each mS~ is essential in ACS~, so cCS~ is simple as a C-module. As 

left C-modules, CS ~= C | AS =~ C | a( @~=1" St) ~- @ni=l (C | mSi) ~- 0~= 1CSi. 

Clearly cCS is essential in cE, thus cCS = So (c E) is finitely generated and essential 

More specifically, if mE = E(mS) is the injective hull of a simple left A-module 

aS, then B~ is local by [-6, Exercise 3, p. 104]. Also, cE has essential simple socle 

cCS by the above. Since cE is an injective cogenerator, cCS is the unique (up to 

isomorphism) simple left C-module. 

In the following, we obtain information on chain conditions for aE by assuming 

that aE is a self cogenerator in Theorem 4.3. 

LEMMA 4.4. Let mE be a finitely cogenerating injective left A-module. The 

following statements are equivalent. 

a) mE is a self-cogenerator. 

b) ~(AE) is perfect and every A-submodule of  E is a C-submodule. 

c) ~(AE) is perfect and C = A  the canonical image of A in C. 

PROOF. 

(a) :~ (c). As before, c E is injective and finitely cogenerating by [9, Th. 2.3]. 

We identify c C as a submodule of c En for some integer n. Let M be a maximal 

left ideal of C. Then c(C/M)~_ c(En/M). Since mE is a self-cogenerator, 

A(C/M) ~ ~I(AE). Hence 0 ~ Homa(C /M, E) = Homc(C /M, E). So c E contains a 

copy of each simple left C-module, hence is an injective cogenerator. By Lemma 

4.1, ~(mE) is perfect. 

As a left A-module, C/A is torsion [-15, Lemma 7.5]. As above, since mE is a 

self-cogenerator, C/A ~ ~I(AE), hence is torsion free. Thus C = A since C/A = O. 

(c) * (b). This is easy since A ~ A/Annm(E ). 

(b) =~ (a). Let mK c mE. Since ~(AE) is perfect, cE is an injective cogenerator. 

Thus c(E/K)~ ~1(c E) since K is a C-submodule of E. Hence re(ElK)~ ~x(mE). 

Therefore, (a) follows by Lemma 1.1. 

PROPOSITION 4.5. Let mE = E(AS ) be the injective hull of a simple left A- 

module mS. Suppose aE satisfies the hypotheses of Theorem 4.3. Then 
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a) AE has finite length if aE is a self-cogenerator. 

b) aE is a self-cogenerator if cC is local. 

PROOf. 

a) By Theorem 4.3, c E has finite length. But every A-submodule of E is a 

C-submodule by Lemma 4.4. Hence ~E has finite length. 

b) If cC is local, then E8 has essential simple socle by the Morita duality. 

Since S is a B-submodule of E, So (E~) _~ S~. By the remark following Theorem 

4.3, So(cE ) = CS. Thus AnnB(CS)= N, the radical of B. Therefore, S =_ CS 

___AnnEAnnB(CS) =AnnE(N)= So(EB) since B/N  is semisimple. Hence S 

= So (EB) = So (c E) = CS. 

Let cE D X1 ~ X2 D ... D Xn =0 be a C-composition series for E. This is also 

an A-composition series since each of the factors is isomorphic to CS = S. If 

aK -~ aE, then E/K is co finitely generated since .4E is Artinian [-16, Proposition 5]. 

Then E / K ~ I ( A E ) s i n c e  So (E/K)~-Smfor some integer m. Therefore, (b) 

follows by Lemma 1.1. 

Applying the preceding to the commutative case yields the following known 

result. 

PROPOSITION 4.6. Let A be a commutative ring with maximal ideal M. I f  

AE = E(A /M) is Noetherian, then En is Noetherian and ~(AE) is perfect. Further- 

more, C '~ A M is local, hence AE is a self-cogenerator of finite length. 

PROOF. Since A is commutative, there is a natural ring homomorphism A ~ B, 

hence every B-submodule of E is an A-submodule. Thus En is Noetherian. Since 

~(aE) is perfect by Corollary 4.2, the result follows by Theorem 4.3 and Proposi- 

tion 4.5. 

COROLLARY 4.7. Every commutative co-Artinian ring is co-Noetherian. 

5. Self-cogenerators 

If A is a commutative co-Artinian ring, then E(aS) is an Artinian self-cogenerator 

for every simple A-module AS. For any ring A, E(AS) has finite length whenever 

it is a self-cogenerator satisfying the hypotheses of Theorem 4.3. In this section, 

we give a more direct method of obtaining chain conditions on E(aS) when it is 

a self-cogenerator. 

PROPOSITION 5.1. For AS simple, let AE = E(AS) be a self-cogenerator with 

B = End(aE). Then aE is Artinian if and only i fB B is Noetherian. 
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PROOF. If AE is Artinian, then BB is Noetherian by (a) of Corollary 2.2. Conver- 

sely, let B8 be Noetherian. Since AE is a self-cogenerator, every submodule of AE 

is closed with respect to AE. Hence aE is Artinian by (a)of Theorem 2.1. 

RZMAR~r Let A be a commutative ring with maximal ideal M. Compare 

Proposition 5.1 with [16, Th. 2] that AE = E(A/M) is Artinian if and only if 

A u is Noetherian. By our results in w if AE is Noetherian, then A~ has Morita 

duality with B = End(AE). Since A E is the minimal injective cogenerator for 

AugJl, B ~- AM [11, Th. 3"]. Rosenberg and Zelinsky have shown [13, Th. 5"] that 

aE = E(A/M) has finite length if and only if A~ is Artinian. The following pro- 

position gives an analogous result for noncommutative rings. 

PROPOSITION 5.2. For A S simple, let AE = E(AS) be a self-cogenerator with 

B = End(AE ). The following statements are equivalent. 

a) A E has finite length. 

b) AE is Noetherian and A(E /S) is cofinitely generated. 

c) B B is Artinian. 

PROOF. 

(a) :~ (b). Clear. 

(b) =~ (c). B is semiprimary by (c) of Corollary 2.2. Since A(E/S) is cofinitely 

generated and AE is a self-cogenerator, AS is a finitely closed submodule of AE. 

Thus by (b) of Theorem 2.1, N B = AnnB(S ) the radical of B is finitely generated. 

Hence B B is Artinian by [12, Lemma 11]. 

(c) ~ (a). If BB is Artinian, then B B has finite length. Since AE is a self-cogene- 

rator, every submodule of AE is closed with respect to AE. Hence AE has finite 

length by (a) of Theorem 2.1. 

By [13, Th. 4], if the injective hull of each simple left A-module has finite length 

then 

1) J i s n i l a n d  n ~ ~  

2) J is nilpotent if A has only finitely many nonisomorphic simple left 

modules. 

In Theorem 3.2, we observed that (2) remains true assuming only that the injec- 

tive hull of each simple left A-module is Noetherian, i.e. A is left co-Artinian. The 

following theorem shows that (1) is valid for any left co-Artinian ring having 

E(~S) a self-cogenerator for each simple left A-module AS. 
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THEOREM 5.3. Let  A be a left co-Artinian ring having E(aS ) a self-cogenerator 

for each s imple  left A-module  aS. Then J is nil and (3 i~ 1 J'  = O. 

PROOF. Let aS be a simple left A-module with aE = E(aS ). Setting aEi 

= AnnE(f ) ,  we have 0 __ E 1 __ E2 --q .... By hypothesis, aE is Noetherian, hence 

there exists an integer k such that E k = Ek+ 1. By [13, Lemma 1] 

Thus 

Homa( jk / jk  + 1, E) _~ E k + 1/Ek = O. 

0 = Homa (E, Homa (dk/jk + 1, E) = H o m  a (dk/jk + 1 | aE, E). 

There is a natural left A-epimorphism 

,lk / jk  + 1 | aE  ~ ,lkE / jk  + IE. 

Applying the functor Homa  ( ,AE) we have H o m a ( j k E / j k + l E ,  E ) =  0. Thus 

dkE/dk+lE = 0 since aE is a self-cogenerator. Since ~tE is Noetherian and dkE 

= ,Ik+IE, we see that dkE = 0. Thus, some power of o r annihilates the injective 

hull of  each simple left A-module. 

The remainder of the proof  is identical to the proof  of  [13, Th. 4]. 
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